Brooks' theorem on powers of graphs

نویسندگان

  • Marthe Bonamy
  • Nicolas Bousquet
چکیده

We prove that for k ≥ 3, the bound given by Brooks’ theorem on the chromatic number of k-th powers of graphs of maximum degree ∆ ≥ 3 can be lowered by 1, even in the case of online list coloring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duchet-type theorems for powers of HHD-free graphs

Using the idea due to P. DUCHET in proving his well–known theorem on powers of chordal graphs, we shall describe some theorems of DUCHET–type for powers of graphs that have no long induced cycles. In particular, our DUCHET–type theorem for HHD–free graphs improves a recent result due to DRAGAN, NICOLAI, BRANDSTÄDT saying that odd powers of HHD–free graphs are also HHD–free.

متن کامل

Restricted List Colorings of Graphs

A graph is called to be uniquely list colorable, if it admits a list assignment which induces a unique list coloring. We study uniquely list colorable graphs with a restriction on the number of colors used. In this way we generalize a theorem which characterizes uniquely 2–list colorable graphs. We introduce the uniquely list chromatic number of a graph and make a conjecture about it which is a...

متن کامل

A Fractional Analogue of Brooks' Theorem

Let ∆(G) be the maximum degree of a graph G. Brooks’ theorem states that the only connected graphs with chromatic number χ(G) = ∆(G) + 1 are complete graphs and odd cycles. We prove a fractional analogue of Brooks’ theorem in this paper. Namely, we classify all connected graphs G such that the fractional chromatic number χf (G) is at least ∆(G). These graphs are complete graphs, odd cycles, C 2...

متن کامل

A list version of Dirac's theorem on the number of edges in colour-critical graphs

One of the basic results in graph colouring is Brooks' theorem [R.

متن کامل

The upper domatic number of powers of graphs

Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 325  شماره 

صفحات  -

تاریخ انتشار 2014